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Preface

The response of students and teachers to the first four editions of Linear Algebra and Its
Applications has been most gratifying. This Fifth Edition provides substantial support
both for teaching and for using technology in the course. As before, the text provides
a modern elementary introduction to linear algebra and a broad selection of interest-
ing applications. The material is accessible to students with the maturity that should
come from successful completion of two semesters of college-level mathematics, usu-
ally calculus.

The main goal of the text is to help students master the basic concepts and skills they
will use later in their careers. The topics here follow the recommendations of the Linear
Algebra Curriculum Study Group, which were based on a careful investigation of the
real needs of the students and a consensus among professionals in many disciplines that
use linear algebra. We hope this course will be one of the most useful and interesting
mathematics classes taken by undergraduates.

WHAT'S NEW IN THIS EDITION

The main goals of this revision were to update the exercises, take advantage of improve-
ments in technology, and provide more support for conceptual learning.
1. Support for the Fifth Edition is offered through MyMathLab. MyMathLab, from

Pearson, is the world’s leading online resource in mathematics, integrating interac-
tive homework, assessment, and media in a flexible, easy-to-use format. Students
submit homework online for instantaneous feedback, support, and assessment. This
system works particularly well for computation-based skills. Many additional re-
sources are also provided through the MyMathLab web site.

2. The Fifth Edition includes additional support for concept- and proof-based learning.
Conceptual Practice Problems and their solutions have been added so that most sec-
tions now have a proof- or concept-based example for students to review. Additional
guidance has also been added to some of the proofs of theorems in the body of the
textbook.

3. More than 25 percent of the exercises are new or updated, especially the computa-
tional exercises. The exercise sets remain one of the most important features of this
book, and these new exercises follow the same high standard of the exercise sets from
the past four editions. They are crafted in a way that reflects the substance of each
of the sections they follow, developing the students’ confidence while challenging
them to practice and generalize the new ideas they have encountered.

8



Preface 9

DISTINCTIVE FEATURES

Early Introduction of Key Concepts
Many fundamental ideas of linear algebra are introduced within the first seven lectures,
in the concrete setting of Rn, and then gradually examined from different points of view.
Later generalizations of these concepts appear as natural extensions of familiar ideas,
visualized through the geometric intuition developed in Chapter 1. A major achievement
of this text is that the level of difficulty is fairly even throughout the course.

A Modern View of Matrix Multiplication
Good notation is crucial, and the text reflects the way scientists and engineers actually
use linear algebra in practice. The definitions and proofs focus on the columns of a ma-
trix rather than on the matrix entries. A central theme is to view a matrix–vector product
Ax as a linear combination of the columns of A. This modern approach simplifies many
arguments, and it ties vector space ideas into the study of linear systems.

Linear Transformations
Linear transformations form a “thread” that is woven into the fabric of the text. Their
use enhances the geometric flavor of the text. In Chapter 1, for instance, linear transfor-
mations provide a dynamic and graphical view of matrix–vector multiplication.

Eigenvalues and Dynamical Systems
Eigenvalues appear fairly early in the text, in Chapters 5 and 7. Because this material
is spread over several weeks, students have more time than usual to absorb and review
these critical concepts. Eigenvalues are motivated by and applied to discrete and con-
tinuous dynamical systems, which appear in Sections 1.10, 4.8, and 4.9, and in five
sections of Chapter 5. Some courses reach Chapter 5 after about five weeks by covering
Sections 2.8 and 2.9 instead of Chapter 4. These two optional sections present all the
vector space concepts from Chapter 4 needed for Chapter 5.

Orthogonality and Least-Squares Problems
These topics receive a more comprehensive treatment than is commonly found in begin-
ning texts. The Linear Algebra Curriculum Study Group has emphasized the need for
a substantial unit on orthogonality and least-squares problems, because orthogonality
plays such an important role in computer calculations and numerical linear algebra and
because inconsistent linear systems arise so often in practical work.

PEDAGOGICAL FEATURES

Applications
A broad selection of applications illustrates the power of linear algebra to explain fun-
damental principles and simplify calculations in engineering, computer science, mathe-
matics, physics, biology, economics, and statistics. Some applications appear in separate
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sections; others are treated in examples and exercises. In addition, each chapter opens
with an introductory vignette that sets the stage for some application of linear algebra
and provides a motivation for developing the mathematics that follows. Later, the text
returns to that application in a section near the end of the chapter.

A Strong Geometric Emphasis
Every major concept in the course is given a geometric interpretation, because many
students learn better when they can visualize an idea. There are substantially more
drawings here than usual, and some of the figures have never before appeared in a linear
algebra text. Interactive versions of these figures, and more, appear in the electronic
version of the textbook.

Examples
This text devotes a larger proportion of its expository material to examples than do most
linear algebra texts. There are more examples than an instructor would ordinarily present
in class. But because the examples are written carefully, with lots of detail, students can
read them on their own.

Theorems and Proofs
Important results are stated as theorems. Other useful facts are displayed in tinted boxes,
for easy reference. Most of the theorems have formal proofs, written with the beginner
student in mind. In a few cases, the essential calculations of a proof are exhibited in a
carefully chosen example. Some routine verifications are saved for exercises, when they
will benefit students.

Practice Problems
A few carefully selected Practice Problems appear just before each exercise set. Com-
plete solutions follow the exercise set. These problems either focus on potential trouble
spots in the exercise set or provide a “warm-up” for the exercises, and the solutions
often contain helpful hints or warnings about the homework.

Exercises
The abundant supply of exercises ranges from routine computations to conceptual ques-
tions that require more thought. A good number of innovative questions pinpoint con-
ceptual difficulties that we have found on student papers over the years. Each exercise
set is carefully arranged in the same general order as the text; homework assignments
are readily available when only part of a section is discussed. A notable feature of the
exercises is their numerical simplicity. Problems “unfold” quickly, so students spend
little time on numerical calculations. The exercises concentrate on teaching understand-
ing rather than mechanical calculations. The exercises in the Fifth Edition maintain the
integrity of the exercises from previous editions, while providing fresh problems for
students and instructors.

Exercises marked with the symbol [M] are designed to be worked with the aid of a
“Matrix program” (a computer program, such asMATLAB®,MapleTM,Mathematica®,
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MathCad®, or DeriveTM, or a programmable calculator with matrix capabilities, such as
those manufactured by Texas Instruments).

True/False Questions
To encourage students to read all of the text and to think critically, we have devel-
oped 300 simple true/false questions that appear in 33 sections of the text, just after
the computational problems. They can be answered directly from the text, and they
prepare students for the conceptual problems that follow. Students appreciate these
questions—after they get used to the importance of reading the text carefully. Based
on class testing and discussions with students, we decided not to put the answers in the
text. (The Study Guide tells the students where to find the answers to the odd-numbered
questions.) An additional 150 true/false questions (mostly at the ends of chapters) test
understanding of the material. The text does provide simple T/F answers to most of
these questions, but it omits the justifications for the answers (which usually require
some thought).

Writing Exercises
An ability to write coherent mathematical statements in English is essential for all stu-
dents of linear algebra, not just those who may go to graduate school in mathematics.
The text includes many exercises for which a written justification is part of the answer.
Conceptual exercises that require a short proof usually contain hints that help a student
get started. For all odd-numbered writing exercises, either a solution is included at the
back of the text or a hint is provided and the solution is given in the Study Guide,
described below.

Computational Topics
The text stresses the impact of the computer on both the development and practice of
linear algebra in science and engineering. Frequent Numerical Notes draw attention
to issues in computing and distinguish between theoretical concepts, such as matrix
inversion, and computer implementations, such as LU factorizations.

WEB SUPPORT

MyMathLab–Online Homework and Resources
Support for the Fifth Edition is offered through MyMathLab (www.mymathlab.com).
MyMathLab from Pearson is the world’s leading online resource in mathematics, inte-
grating interactive homework, assessment, and media in a flexible, easy-to-use format.
MyMathLab contains hundreds of algorithmically generated exercises that mirror those
in the textbook. Students submit homework online for instantaneous feedback, support,
and assessment. This system works particularly well for supporting computation-based
skills. Many additional resources are also provided through the MyMathLab web site.

Interactive Textbook
The Fifth Edition of the text is available in an interactive electronic format within
MyMathLab.

http://www.mymathlab.com
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This web site at www.pearsonglobaleditions.com/lay contains all of the support material
referenced below. These materials are also available within MyMathLab.

Review Material
Review sheets and practice exams (with solutions) cover the main topics in the text.
They come directly from courses we have taught in the past years. Each review sheet
identifies key definitions, theorems, and skills from a specified portion of the text.

Applications by Chapters
The web site contains seven Case Studies, which expand topics introduced at the begin-
ning of each chapter, adding real-world data and opportunities for further exploration. In
addition, more than 20 Application Projects either extend topics in the text or introduce
new applications, such as cubic splines, airline flight routes, dominance matrices in
sports competition, and error-correcting codes. Some mathematical applications are
integration techniques, polynomial root location, conic sections, quadric surfaces, and
extrema for functions of two variables. Numerical linear algebra topics, such as con-
dition numbers, matrix factorizations, and the QR method for finding eigenvalues, are
also included. Woven into each discussion are exercises that may involve large data sets
(and thus require technology for their solution).

Getting Started with Technology
If your course includes some work with MATLAB, Maple, Mathematica, or TI calcula-
tors, the Getting Started guides provide a “quick start guide” for students.

Technology-specific projects are also available to introduce students to software
and calculators. They are available on www.pearsonglobaleditions.com/lay and within
MyMathLab. Finally, the Study Guide provides introductory material for first-time
technology users.

Data Files
Hundreds of files contain data for about 900 numerical exercises in the text, Case
Studies, and Application Projects. The data are available in a variety of formats—for
MATLAB, Maple, Mathematica, and the Texas Instruments graphing calculators. By
allowing students to access matrices and vectors for a particular problem with only a
few keystrokes, the data files eliminate data entry errors and save time on homework.
These data files are available for download at www.pearsonglobaleditions.com/lay and
MyMathLab.

Projects
Exploratory projects for Mathematica,TM Maple, and MATLAB invite students to dis-
cover basic mathematical and numerical issues in linear algebra. Written by experi-
enced faculty members, these projects are referenced by the icon WEB at appropriate
points in the text. The projects explore fundamental concepts such as the column space,
diagonalization, and orthogonal projections; several projects focus on numerical issues
such as flops, iterative methods, and the SVD; and a few projects explore applications
such as Lagrange interpolation and Markov chains.

http://www.pearsonglobaleditions.com/lay
http://www.pearsonglobaleditions.com/lay
http://www.pearsonglobaleditions.com/lay
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SUPPLEMENTS

Study Guide
The Study Guide is designed to be an integral part of the course. The icon SG in
the text directs students to special subsections of the Guide that suggest how to master
key concepts of the course. The Guide supplies a detailed solution to every third odd-
numbered exercise, which allows students to check their work. A complete explanation
is provided whenever an odd-numbered writing exercise has only a “Hint” in the an-
swers. Frequent “Warnings” identify common errors and show how to prevent them.
MATLAB boxes introduce commands as they are needed. Appendixes in the Study
Guide provide comparable information about Maple, Mathematica, and TI graphing
calculators.

Instructor’s Technology Manuals
Each manual provides detailed guidance for integrating a specific software package or
graphing calculator throughout the course, written by faculty who have already used the
technology with this text. The following manuals are available to qualified instructors
through the Pearson Instructor Resource Center, www.pearsonglobaleditions.com/lay
and MyMathLab: MATLAB, Maple Mathematica and TI-83C/89.

Instructor’s Solutions Manual
The Instructor’s Solutions Manual contains detailed solutions for all exercises, along
with teaching notes for many sections. The manual is available electronically for down-
load in the Instructor Resource Center (www.pearsonglobaleditions.com/lay) and
MyMathLab.

PowerPoint® Slides and Other Teaching Tools
A brisk pace at the beginning of the course helps to set the tone for the term. To get
quickly through the first two sections in fewer than two lectures, consider using
PowerPoint® slides. They permit you to focus on the process of row reduction rather than
to write many numbers on the board. Students can receive a condensed version of the
notes, with occasional blanks to fill in during the lecture. (Many students respond favor-
ably to this gesture.) The PowerPoint slides are available for 25 core sections of the text.
In addition, about 75 color figures from the text are available as PowerPoint slides. The
PowerPoint slides are available for download at www.pearsonglobaleditions.com/lay.

TestGen
TestGen (www.pearsonhighered.com/testgen) enables instructors to build, edit, print,
and administer tests using a computized bank of questions developed to cover all the
objectives of the text. TestGen is algorithmically based, allowing instructors to create
multiple, but equivalent, versions of the same question or test with the click of a button.
Instructors can also modify test bank questions or add new questions. The software and
test bank are available for download from Pearson Education’s online catalog.

http://www.pearsonglobaleditions.com/lay
http://www.pearsonglobaleditions.com/lay
http://www.pearsonglobaleditions.com/lay
http://www.pearsonhighered.com/testgen
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A Note to Students

This course is potentially the most interesting and worthwhile undergraduate mathe-
matics course you will complete. In fact, some students have written or spoken to us
after graduation and said that they still use this text occasionally as a reference in their
careers at major corporations and engineering graduate schools. The following remarks
offer some practical advice and information to help you master the material and enjoy
the course.

In linear algebra, the concepts are as important as the computations. The simple
numerical exercises that begin each exercise set only help you check your understanding
of basic procedures. Later in your career, computers will do the calculations, but you
will have to choose the calculations, know how to interpret the results, and then explain
the results to other people. For this reason, many exercises in the text ask you to explain
or justify your calculations. A written explanation is often required as part of the answer.
For odd-numbered exercises, you will find either the desired explanation or at least a
good hint. You must avoid the temptation to look at such answers before you have tried
to write out the solution yourself. Otherwise, you are likely to think you understand
something when in fact you do not.

To master the concepts of linear algebra, you will have to read and reread the text
carefully. New terms are in boldface type, sometimes enclosed in a definition box. A
glossary of terms is included at the end of the text. Important facts are stated as theorems
or are enclosed in tinted boxes, for easy reference. We encourage you to read the first
five pages of the Preface to learn more about the structure of this text. This will give
you a framework for understanding how the course may proceed.

In a practical sense, linear algebra is a language. You must learn this language the
same way you would a foreign language—with daily work. Material presented in one
section is not easily understood unless you have thoroughly studied the text and worked
the exercises for the preceding sections. Keeping up with the course will save you lots
of time and distress!

Numerical Notes
We hope you read the Numerical Notes in the text, even if you are not using a computer
or graphing calculator with the text. In real life, most applications of linear algebra
involve numerical computations that are subject to some numerical error, even though
that error may be extremely small. The Numerical Notes will warn you of potential
difficulties in using linear algebra later in your career, and if you study the notes now,
you are more likely to remember them later.

If you enjoy reading the Numerical Notes, you may want to take a course later in
numerical linear algebra. Because of the high demand for increased computing power,
computer scientists and mathematicians work in numerical linear algebra to develop
faster and more reliable algorithms for computations, and electrical engineers design
faster and smaller computers to run the algorithms. This is an exciting field, and your
first course in linear algebra will help you prepare for it.
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16 A Note to Students

Study Guide
To help you succeed in this course, we suggest that you purchase the Study Guide. It
is available electronically within MyMathLab. Not only will it help you learn linear
algebra, it also will show you how to study mathematics. At strategic points in your
textbook, the icon SG will direct you to special subsections in the Study Guide entitled
“Mastering Linear Algebra Concepts.” There you will find suggestions for constructing
effective review sheets of key concepts. The act of preparing the sheets is one of
the secrets to success in the course, because you will construct links between ideas.
These links are the “glue” that enables you to build a solid foundation for learning and
remembering the main concepts in the course.

The Study Guide contains a detailed solution to every third odd-numbered exercise,
plus solutions to all odd-numbered writing exercises for which only a hint is given in the
Answers section of this book. The Guide is separate from the text because you must learn
to write solutions by yourself, without much help. (We know from years of experience
that easy access to solutions in the back of the text slows the mathematical development
of most students.) The Guide also provides warnings of common errors and helpful hints
that call attention to key exercises and potential exam questions.

If you have access to technology—MATLAB, Maple, Mathematica, or a TI graph-
ing calculator—you can save many hours of homework time. The Study Guide is
your “lab manual” that explains how to use each of these matrix utilities. It intro-
duces new commands when they are needed. You can download from the web site
www.pearsonhighered.com/lay the data for more than 850 exercises in the text. (With
a few keystrokes, you can display any numerical homework problem on your screen.)
Special matrix commands will perform the computations for you!

What you do in your first few weeks of studying this course will set your pattern
for the term and determine how well you finish the course. Please read “How to Study
Linear Algebra” in the Study Guide as soon as possible. Many students have found the
strategies there very helpful, and we hope you will, too.

http://www.pearsonhighered.com/lay


1 Linear Equations in
Linear Algebra

INTRODUCTORY EXAMPLE

Linear Models in Economics
and Engineering
It was late summer in 1949. Harvard Professor Wassily
Leontief was carefully feeding the last of his punched cards
into the university’s Mark II computer. The cards contained
information about the U.S. economy and represented a
summary of more than 250,000 pieces of information
produced by the U.S. Bureau of Labor Statistics after two
years of intensive work. Leontief had divided the U.S.
economy into 500 “sectors,” such as the coal industry,
the automotive industry, communications, and so on.
For each sector, he had written a linear equation that
described how the sector distributed its output to the other
sectors of the economy. Because the Mark II, one of the
largest computers of its day, could not handle the resulting
system of 500 equations in 500 unknowns, Leontief had
distilled the problem into a system of 42 equations in
42 unknowns.

Programming the Mark II computer for Leontief’s 42
equations had required several months of effort, and he
was anxious to see how long the computer would take to
solve the problem. The Mark II hummed and blinked for 56
hours before finally producing a solution. We will discuss
the nature of this solution in Sections 1.6 and 2.6.

Leontief, who was awarded the 1973 Nobel Prize
in Economic Science, opened the door to a new era
in mathematical modeling in economics. His efforts

at Harvard in 1949 marked one of the first significant
uses of computers to analyze what was then a large-
scale mathematical model. Since that time, researchers
in many other fields have employed computers to analyze
mathematical models. Because of the massive amounts of
data involved, the models are usually linear; that is, they
are described by systems of linear equations.

The importance of linear algebra for applications has
risen in direct proportion to the increase in computing
power, with each new generation of hardware and
software triggering a demand for even greater capabilities.
Computer science is thus intricately linked with linear
algebra through the explosive growth of parallel processing
and large-scale computations.

Scientists and engineers now work on problems far
more complex than even dreamed possible a few decades
ago. Today, linear algebra has more potential value for
students in many scientific and business fields than any
other undergraduate mathematics subject! The material in
this text provides the foundation for further work in many
interesting areas. Here are a few possibilities; others will
be described later.

� Oil exploration. When a ship searches for offshore
oil deposits, its computers solve thousands of
separate systems of linear equations every day.

17
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The seismic data for the equations are obtained
from underwater shock waves created by explosions
from air guns. The waves bounce off subsurface
rocks and are measured by geophones attached to
mile-long cables behind the ship.

� Linear programming. Many important management
decisions today are made on the basis of linear
programming models that use hundreds of variables.
The airline industry, for instance, employs linear

programs that schedule flight crews, monitor the
locations of aircraft, or plan the varied schedules of
support services such as maintenance and terminal
operations.

� Electrical networks. Engineers use simulation
software to design electrical circuits and microchips
involving millions of transistors. Such software
relies on linear algebra techniques and systems of
linear equations.

WEB

Systems of linear equations lie at the heart of linear algebra, and this chapter uses them
to introduce some of the central concepts of linear algebra in a simple and concrete
setting. Sections 1.1 and 1.2 present a systematic method for solving systems of linear
equations. This algorithm will be used for computations throughout the text. Sections 1.3
and 1.4 show how a system of linear equations is equivalent to a vector equation and to a
matrix equation. This equivalence will reduce problems involving linear combinations
of vectors to questions about systems of linear equations. The fundamental concepts of
spanning, linear independence, and linear transformations, studied in the second half of
the chapter, will play an essential role throughout the text as we explore the beauty and
power of linear algebra.

1.1 SYSTEMS OF LINEAR EQUATIONS

A linear equation in the variables x1; : : : ; xn is an equation that can be written in the
form

a1x1 C a2x2 C � � � C anxn D b (1)
where b and the coefficients a1; : : : ; an are real or complex numbers, usually known
in advance. The subscript n may be any positive integer. In textbook examples and
exercises, n is normally between 2 and 5. In real-life problems, n might be 50 or 5000,
or even larger.

The equations
4x1 � 5x2 C 2 D x1 and x2 D 2

�p
6 � x1

�
C x3

are both linear because they can be rearranged algebraically as in equation (1):
3x1 � 5x2 D �2 and 2x1 C x2 � x3 D 2

p
6

The equations
4x1 � 5x2 D x1x2 and x2 D 2

p
x1 � 6

are not linear because of the presence of x1x2 in the first equation and p
x1 in the second.

A system of linear equations (or a linear system) is a collection of one or more
linear equations involving the same variables—say, x1; : : : ; xn. An example is

2x1 � x2 C 1:5x3 D 8

x1 � 4x3 D �7
(2)



1.1 Systems of Linear Equations 19

A solution of the system is a list .s1; s2; : : : ; sn/ of numbers that makes each equation a
true statement when the values s1; : : : ; sn are substituted for x1; : : : ; xn, respectively. For
instance, .5; 6:5; 3/ is a solution of system (2) because, when these values are substituted
in (2) for x1; x2; x3, respectively, the equations simplify to 8 D 8 and �7 D �7.

The set of all possible solutions is called the solution set of the linear system. Two
linear systems are called equivalent if they have the same solution set. That is, each
solution of the first system is a solution of the second system, and each solution of the
second system is a solution of the first.

Finding the solution set of a system of two linear equations in two variables is easy
because it amounts to finding the intersection of two lines. A typical problem is

x1 � 2x2 D �1

�x1 C 3x2 D 3

The graphs of these equations are lines, which we denote by `1 and `2. A pair of numbers
.x1; x2/ satisfies both equations in the system if and only if the point .x1; x2/ lies on both
`1 and `2. In the system above, the solution is the single point .3; 2/, as you can easily
verify. See Figure 1.

2

3

x2

x1

�1

�2

FIGURE 1 Exactly one solution.

Of course, two lines need not intersect in a single point—they could be parallel, or
they could coincide and hence “intersect” at every point on the line. Figure 2 shows the
graphs that correspond to the following systems:

(a) x1 � 2x2 D �1

�x1 C 2x2 D 3

(b) x1 � 2x2 D �1

�x1 C 2x2 D 1

�1
�2

2

3

x2

x1

(a)

�1

2

3

x2

x1

(b)

FIGURE 2 (a) No solution. (b) Infinitely many solutions.

Figures 1 and 2 illustrate the following general fact about linear systems, to be
verified in Section 1.2.
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A system of linear equations has
1. no solution, or
2. exactly one solution, or
3. infinitely many solutions.

A system of linear equations is said to be consistent if it has either one solution or
infinitely many solutions; a system is inconsistent if it has no solution.

Matrix Notation
The essential information of a linear system can be recorded compactly in a rectangular
array called a matrix. Given the system

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

(3)

with the coefficients of each variable aligned in columns, the matrix24 1 �2 1

0 2 �8

5 0 �5

35
is called the coefficient matrix (or matrix of coefficients) of the system (3), and24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35 (4)

is called the augmented matrix of the system. (The second row here contains a zero
because the second equation could be written as 0 � x1 C 2x2 � 8x3 D 8.) An augmented
matrix of a system consists of the coefficient matrix with an added column containing
the constants from the right sides of the equations.

The size of a matrix tells how many rows and columns it has. The augmented matrix
(4) above has 3 rows and 4 columns and is called a 3 � 4 (read “3 by 4”) matrix. If m and
n are positive integers, an m � n matrix is a rectangular array of numbers with m rows
and n columns. (The number of rows always comes first.) Matrix notation will simplify
the calculations in the examples that follow.

Solving a Linear System
This section and the next describe an algorithm, or a systematic procedure, for solving
linear systems. The basic strategy is to replace one system with an equivalent system
(i.e., one with the same solution set) that is easier to solve.

Roughly speaking, use the x1 term in the first equation of a system to eliminate the
x1 terms in the other equations. Then use the x2 term in the second equation to eliminate
the x2 terms in the other equations, and so on, until you finally obtain a very simple
equivalent system of equations.

Three basic operations are used to simplify a linear system: Replace one equation
by the sum of itself and a multiple of another equation, interchange two equations, and
multiply all the terms in an equation by a nonzero constant. After the first example, you
will see why these three operations do not change the solution set of the system.
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EXAMPLE 1 Solve system (3).
SOLUTION The elimination procedure is shown here with and without matrix notation,
and the results are placed side by side for comparison:

x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

24 1 �2 1 0

0 2 �8 8

5 0 �5 10

35
Keep x1 in the first equation and eliminate it from the other equations. To do so, add �5

times equation 1 to equation 3. After some practice, this type of calculation is usually
performed mentally:

�5 � Œequation 1�

C Œequation 3�

Œnew equation 3�

�5x1 C 10x2 � 5x3 D 0

5x1 � 5x3 D 10

10x2 � 10x3 D 10

The result of this calculation is written in place of the original third equation:
x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

10x2 � 10x3 D 10

24 1 �2 1 0

0 2 �8 8

0 10 �10 10

35
Now, multiply equation 2 by 1

2
in order to obtain 1 as the coefficient for x2. (This

calculation will simplify the arithmetic in the next step.)
x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

10x2 � 10x3 D 10

24 1 �2 1 0

0 1 �4 4

0 10 �10 10

35
Use the x2 in equation 2 to eliminate the 10x2 in equation 3. The “mental’’ computation
is

�10 � Œequation 2�

C Œequation 3�

Œnew equation 3�

�10x2 C 40x3 D �40

10x2 � 10x3 D 10

30x3 D �30

The result of this calculation is written in place of the previous third equation (row):
x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

30x3 D �30

24 1 �2 1 0

0 1 �4 4

0 0 30 �30

35
Now, multiply equation 3 by 1

30
in order to obtain 1 as the coefficient for x3. (This

calculation will simplify the arithmetic in the next step.)
x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
The new system has a triangular form (the intuitive term triangular will be replaced by
a precise term in the next section):

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
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Eventually, you want to eliminate the �2x2 term from equation 1, but it is more efficient
to use the x3 in equation 3 first, to eliminate the �4x3 and Cx3 terms in equations 2 and 1.
The two “mental” calculations are

4 � Œequation 3�

C Œequation 2�

Œnew equation 2�

4x3 D �4

x2 � 4x3 D 4

x2 D 0

�1 � Œequation 3�

C Œequation 1�

Œnew equation 1�

� x3 D 1

x1 � 2x2 C x3 D 0

x1 � 2x2 D 1

It is convenient to combine the results of these two operations:
x1 � 2x2 D 1

x2 D 0

x3 D �1

24 1 �2 0 1

0 1 0 0

0 0 1 �1

35
Now, having cleaned out the column above the x3 in equation 3, move back to the x2 in
equation 2 and use it to eliminate the �2x2 above it. Because of the previous work with
x3, there is now no arithmetic involving x3 terms. Add 2 times equation 2 to equation 1
and obtain the system:

x1 D 1

x2 D 0

x3 D �1

24 1 0 0 1

0 1 0 0

0 0 1 �1

35
The work is essentially done. It shows that the only solution of the original system is

x2

x3

(1, 0, �1)

x1

Each of the original equations
determines a plane in
three-dimensional space. The
point .1; 0; �1/ lies in all three
planes.

.1; 0; �1/. However, since there are so many calculations involved, it is a good practice
to check the work. To verify that .1; 0; �1/ is a solution, substitute these values into the
left side of the original system, and compute:

1.1/ � 2.0/ C 1.�1/ D 1 � 0 � 1 D 0

2.0/ � 8.�1/ D 0 C 8 D 8

5.1/ � 5.�1/ D 5 C 5 D 10

The results agree with the right side of the original system, so .1; 0; �1/ is a solution of
the system.

Example 1 illustrates how operations on equations in a linear system correspond to
operations on the appropriate rows of the augmented matrix. The three basic operations
listed earlier correspond to the following operations on the augmented matrix.

ELEMENTARY ROW OPERATIONS

1. (Replacement) Replace one row by the sum of itself and a multiple of another
row.1

2. (Interchange) Interchange two rows.
3. (Scaling) Multiply all entries in a row by a nonzero constant.

Row operations can be applied to any matrix, not merely to one that arises as the
augmented matrix of a linear system. Two matrices are called row equivalent if there
is a sequence of elementary row operations that transforms one matrix into the other.

It is important to note that row operations are reversible. If two rows are inter-
changed, they can be returned to their original positions by another interchange. If a

1 A common paraphrase of row replacement is “Add to one row a multiple of another row.”
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row is scaled by a nonzero constant c, then multiplying the new row by 1=c produces
the original row. Finally, consider a replacement operation involving two rows—say,
rows 1 and 2—and suppose that c times row 1 is added to row 2 to produce a new row
2. To “reverse” this operation, add �c times row 1 to (new) row 2 and obtain the original
row 2. See Exercises 29–32 at the end of this section.

At the moment, we are interested in row operations on the augmented matrix of a
system of linear equations. Suppose a system is changed to a new one via row operations.
By considering each type of row operation, you can see that any solution of the original
system remains a solution of the new system. Conversely, since the original system can
be produced via row operations on the new system, each solution of the new system is
also a solution of the original system. This discussion justifies the following statement.

If the augmented matrices of two linear systems are row equivalent, then the two
systems have the same solution set.

Though Example 1 is lengthy, you will find that after some practice, the calculations
go quickly. Row operations in the text and exercises will usually be extremely easy to
perform, allowing you to focus on the underlying concepts. Still, you must learn to
perform row operations accurately because they will be used throughout the text.

The rest of this section shows how to use row operations to determine the size of a
solution set, without completely solving the linear system.

Existence and Uniqueness Questions
Section 1.2 will show why a solution set for a linear system contains either no solutions,
one solution, or infinitely many solutions. Answers to the following two questions will
determine the nature of the solution set for a linear system.

To determine which possibility is true for a particular system, we ask two questions.

TWO FUNDAMENTAL QUESTIONS ABOUT A LINEAR SYSTEM

1. Is the system consistent; that is, does at least one solution exist?
2. If a solution exists, is it the only one; that is, is the solution unique?

These two questions will appear throughout the text, in many different guises. This
section and the next will show how to answer these questions via row operations on
the augmented matrix.

EXAMPLE 2 Determine if the following system is consistent:
x1 � 2x2 C x3 D 0

2x2 � 8x3 D 8

5x1 � 5x3 D 10

SOLUTION This is the system from Example 1. Suppose that we have performed the
row operations necessary to obtain the triangular form

x1 � 2x2 C x3 D 0

x2 � 4x3 D 4

x3 D �1

24 1 �2 1 0

0 1 �4 4

0 0 1 �1

35
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At this point, we know x3. Were we to substitute the value of x3 into equation 2, we
could compute x2 and hence could determine x1 from equation 1. So a solution exists;
the system is consistent. (In fact, x2 is uniquely determined by equation 2 since x3 has
only one possible value, and x1 is therefore uniquely determined by equation 1. So the
solution is unique.)

EXAMPLE 3 Determine if the following system is consistent:

x2 � 4x3 D 8

2x1 � 3x2 C 2x3 D 1

4x1 � 8x2 C 12x3 D 1

(5)

SOLUTION The augmented matrix is24 0 1 �4 8

2 �3 2 1

4 �8 12 1

35
To obtain an x1 in the first equation, interchange rows 1 and 2:24 2 �3 2 1

0 1 �4 8

4 �8 12 1

35
To eliminate the 4x1 term in the third equation, add �2 times row 1 to row 3:24 2 �3 2 1

0 1 �4 8

0 �2 8 �1

35 (6)

Next, use the x2 term in the second equation to eliminate the �2x2 term from the third
equation. Add 2 times row 2 to row 3:24 2 �3 2 1

0 1 �4 8

0 0 0 15

35 (7)

The augmented matrix is now in triangular form. To interpret it correctly, go back to
equation notation:

2x1 � 3x2 C 2x3 D 1

x2 � 4x3 D 8

0 D 15

(8)

The equation 0 D 15 is a short form of 0x1 C 0x2 C 0x3 D 15. This system in trian-
gular form obviously has a built-in contradiction. There are no values of x1; x2; x3 that
satisfy (8) because the equation 0 D 15 is never true. Since (8) and (5) have the same
solution set, the original system is inconsistent (i.e., has no solution).

x2
x1

x3

x2
x1

x3

The system is inconsistent because
there is no point that lies on all
three planes.

Pay close attention to the augmented matrix in (7). Its last row is typical of an
inconsistent system in triangular form.



1.1 Systems of Linear Equations 25

NUMER ICAL NOTE

In real-world problems, systems of linear equations are solved by a computer.
For a square coefficient matrix, computer programs nearly always use the elim-
ination algorithm given here and in Section 1.2, modified slightly for improved
accuracy.

The vast majority of linear algebra problems in business and industry are
solved with programs that use floating point arithmetic. Numbers are represented
as decimals ˙:d1 � � � dp � 10r , where r is an integer and the number p of digits to
the right of the decimal point is usually between 8 and 16. Arithmetic with such
numbers typically is inexact, because the result must be rounded (or truncated)
to the number of digits stored. “Roundoff error” is also introduced when a
number such as 1=3 is entered into the computer, since its decimal representation
must be approximated by a finite number of digits. Fortunately, inaccuracies in
floating point arithmetic seldom cause problems. The numerical notes in this
book will occasionally warn of issues that you may need to consider later in your
career.

PRACTICE PROBLEMS

Throughout the text, practice problems should be attempted before working the exer-
cises. Solutions appear after each exercise set.
1. State in words the next elementary row operation that should be performed on the

system in order to solve it. [More than one answer is possible in (a).]
a. x1 C 4x2 � 2x3 C 8x4 D 12

x2 � 7x3 C 2x4 D �4

5x3 � x4 D 7

x3 C 3x4 D �5

b. x1 � 3x2 C 5x3 � 2x4 D 0

x2 C 8x3 D �4

2x3 D 3

x4 D 1

2. The augmented matrix of a linear system has been transformed by row operations
into the form below. Determine if the system is consistent.24 1 5 2 �6

0 4 �7 2

0 0 5 0

35
3. Is .3; 4; �2/ a solution of the following system?

5x1 � x2 C 2x3 D 7

�2x1 C 6x2 C 9x3 D 0

�7x1 C 5x2 � 3x3 D �7

4. For what values of h and k is the following system consistent?
2x1 � x2 D h

�6x1 C 3x2 D k
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1.1 EXERCISES
Solve each system in Exercises 1–4 by using elementary row
operations on the equations or on the augmented matrix. Follow
the systematic elimination procedure described in this section.

1. x1 C 5x2 D 7

�2x1 � 7x2 D �5

2. 2x1 C 4x2 D �4

5x1 C 7x2 D 11

3. Find the point .x1; x2/ that lies on the line x1 C 5x2 D 7 and
on the line x1 � 2x2 D �2. See the figure.

x2

x1

x1 + 5x2 = 7
x1 – 2x2 = –2

4. Find the point of intersection of the lines x1 � 5x2 D 1 and
3x1 � 7x2 D 5.

Consider each matrix in Exercises 5 and 6 as the augmented matrix
of a linear system. State in words the next two elementary row
operations that should be performed in the process of solving the
system.

5.

2664
1 �4 5 0 7

0 1 �3 0 6

0 0 1 0 2

0 0 0 1 �5

3775

6.

2664
1 �6 4 0 �1

0 2 �7 0 4

0 0 1 2 �3

0 0 3 1 6

3775
In Exercises 7–10, the augmented matrix of a linear system has
been reduced by row operations to the form shown. In each case,
continue the appropriate row operations and describe the solution
set of the original system.

7.

2664
1 7 3 �4

0 1 �1 3

0 0 0 1

0 0 1 �2

3775 8.
24 1 �4 9 0

0 1 7 0

0 0 2 0

35

9.

2664
1 �1 0 0 �4

0 1 �3 0 �7

0 0 1 �3 �1

0 0 0 2 4

3775

10.

2664
1 �2 0 3 �2

0 1 0 �4 7

0 0 1 0 6

0 0 0 1 �3

3775
Solve the systems in Exercises 11–14.
11. x2 C 4x3 D �5

x1 C 3x2 C 5x3 D �2

3x1 C 7x2 C 7x3 D 6

12. x1 � 3x2 C 4x3 D �4

3x1 � 7x2 C 7x3 D �8

�4x1 C 6x2 � x3 D 7

13. x1 � 3x3 D 8

2x1 C 2x2 C 9x3 D 7

x2 C 5x3 D �2

14. x1 � 3x2 D 5

�x1 C x2 C 5x3 D 2

x2 C x3 D 0

Determine if the systems in Exercises 15 and 16 are consistent.
Do not completely solve the systems.
15. x1 C 3x3 D 2

x2 � 3x4 D 3

� 2x2 C 3x3 C 2x4 D 1

3x1 C 7x4 D �5

16. x1 � 2x4 D �3

2x2 C 2x3 D 0

x3 C 3x4 D 1

�2x1 C 3x2 C 2x3 C x4 D 5

17. Do the three lines x1 � 4x2 D 1, 2x1 � x2 D �3, and
�x1 � 3x2 D 4 have a common point of intersection?
Explain.

18. Do the three planes x1 C 2x2 C x3 D 4, x2 � x3 D 1, and
x1 C 3x2 D 0 have at least one common point of intersec-
tion? Explain.

In Exercises 19–22, determine the value(s) of h such that the
matrix is the augmented matrix of a consistent linear system.

19.
�

1 h 4

3 6 8

�
20.

�
1 h �3

�2 4 6

�

21.
�

1 3 �2

�4 h 8

�
22.

�
2 �3 h

�6 9 5

�
In Exercises 23 and 24, key statements from this section are
either quoted directly, restated slightly (but still true), or altered
in some way that makes them false in some cases. Mark each
statement True or False, and justify your answer. (If true, give the
approximate location where a similar statement appears, or refer
to a definition or theorem. If false, give the location of a statement
that has been quoted or used incorrectly, or cite an example that
shows the statement is not true in all cases.) Similar true/false
questions will appear in many sections of the text.
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23. a. Every elementary row operation is reversible.
b. A 5 � 6 matrix has six rows.
c. The solution set of a linear system involving variables

x1; : : : ; xn is a list of numbers .s1; : : : ; sn/ that makes each
equation in the system a true statement when the values
s1; : : : ; sn are substituted for x1; : : : ; xn, respectively.

d. Two fundamental questions about a linear system involve
existence and uniqueness.

24. a. Elementary row operations on an augmented matrix never
change the solution set of the associated linear system.

b. Two matrices are row equivalent if they have the same
number of rows.

c. An inconsistent system has more than one solution.
d. Two linear systems are equivalent if they have the same

solution set.
25. Find an equation involving g, h, and k that makes this

augmented matrix correspond to a consistent system:24 1 �4 7 g

0 3 �5 h

�2 5 �9 k

35
26. Construct three different augmented matrices for linear sys-

tems whose solution set is x1 D �2, x2 D 1, x3 D 0.
27. Suppose the system below is consistent for all possible values

of f and g. What can you say about the coefficients c and d?
Justify your answer.
x1 C 3x2 D f

cx1 C dx2 D g

28. Suppose a, b, c, and d are constants such that a is not zero
and the system below is consistent for all possible values of
f and g. What can you say about the numbers a, b, c, and d?
Justify your answer.
ax1 C bx2 D f

cx1 C dx2 D g

In Exercises 29–32, find the elementary row operation that trans-
forms the first matrix into the second, and then find the reverse
row operation that transforms the second matrix into the first.

29.
24 0 �2 5

1 4 �7

3 �1 6

35 ;

24 1 4 �7

0 �2 5

3 �1 6

35
30.

24 1 3 �4

0 �2 6

0 �5 9

35 ;

24 1 3 �4

0 1 �3

0 �5 9

35
31.

24 1 �2 1 0

0 5 �2 8

4 �1 3 �6

35 ;

24 1 �2 1 0

0 5 �2 8

0 7 �1 �6

35
32.

24 1 2 �5 0

0 1 �3 �2

0 �3 9 5

35 ;

24 1 2 �5 0

0 1 �3 �2

0 0 0 �1

35
An important concern in the study of heat transfer is to determine
the steady-state temperature distribution of a thin plate when the
temperature around the boundary is known. Assume the plate
shown in the figure represents a cross section of a metal beam,
with negligible heat flow in the direction perpendicular to the
plate. Let T1; : : : ; T4 denote the temperatures at the four interior
nodes of the mesh in the figure. The temperature at a node is
approximately equal to the average of the four nearest nodes—
to the left, above, to the right, and below.2 For instance,
T1 D .10 C 20 C T2 C T4/=4; or 4T1 � T2 � T4 D 30

10°

10°

40°

40°

20° 20°

30° 30°

1 2

4 3

33. Write a system of four equations whose solution gives esti-
mates for the temperatures T1; : : : ; T4.

34. Solve the system of equations from Exercise 33. [Hint: To
speed up the calculations, interchange rows 1 and 4 before
starting “replace” operations.]

2 See Frank M. White, Heat and Mass Transfer (Reading, MA:
Addison-Wesley Publishing, 1991), pp. 145–149.

SOLUTIONS TO PRACTICE PROBLEMS

1. a. For “hand computation,” the best choice is to interchange equations 3 and 4.
Another possibility is to multiply equation 3 by 1=5. Or, replace equation 4 by
its sum with �1=5 times row 3. (In any case, do not use the x2 in equation 2 to
eliminate the 4x2 in equation 1. Wait until a triangular form has been reached and
the x3 terms and x4 terms have been eliminated from the first two equations.)

b. The system is in triangular form. Further simplification begins with the x4 in the
fourth equation. Use the x4 to eliminate all x4 terms above it. The appropriate
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step now is to add 2 times equation 4 to equation 1. (After that, move to equa-
tion 3, multiply it by 1=2, and then use the equation to eliminate the x3 terms
above it.)

2. The system corresponding to the augmented matrix is

x1 C 5x2 C 2x3 D �6

4x2 � 7x3 D 2

5x3 D 0

The third equation makes x3 D 0, which is certainly an allowable value for x3. After
eliminating the x3 terms in equations 1 and 2, you could go on to solve for unique
values for x2 and x1. Hence a solution exists, and it is unique. Contrast this situation
with that in Example 3.

3. It is easy to check if a specific list of numbers is a solution. Set x1 D 3, x2 D 4, and
x3 D �2, and find that

5.3/ � .4/ C 2.�2/ D 15 � 4 � 4 D 7

�2.3/ C 6.4/ C 9.�2/ D �6 C 24 � 18 D 0

�7.3/ C 5.4/ � 3.�2/ D �21 C 20 C 6 D 5

Although the first two equations are satisfied, the third is not, so .3; 4; �2/ is not a
solution of the system. Notice the use of parentheses when making the substitutions.
They are strongly recommended as a guard against arithmetic errors.

x3

x2

x1

(3, 4, �2)

Since .3; 4; �2/ satisfies the first
two equations, it is on the line of
the intersection of the first two
planes. Since .3; 4; �2/ does not
satisfy all three equations, it does
not lie on all three planes.

4. When the second equation is replaced by its sum with 3 times the first equation, the
system becomes

2x1 � x2 D h

0 D k C 3h

If k C 3h is nonzero, the system has no solution. The system is consistent for any
values of h and k that make k C 3h D 0.

1.2 ROW REDUCTION AND ECHELON FORMS

This section refines the method of Section 1.1 into a row reduction algorithm that will
enable us to analyze any system of linear equations.1 By using only the first part of
the algorithm, we will be able to answer the fundamental existence and uniqueness
questions posed in Section 1.1.

The algorithm applies to any matrix, whether or not the matrix is viewed as an
augmented matrix for a linear system. So the first part of this section concerns an arbi-
trary rectangular matrix and begins by introducing two important classes of matrices that
include the “triangular” matrices of Section 1.1. In the definitions that follow, a nonzero
row or column in a matrix means a row or column that contains at least one nonzero
entry; a leading entry of a row refers to the leftmost nonzero entry (in a nonzero row).

1 The algorithm here is a variant of what is commonly called Gaussian elimination. A similar elimination
method for linear systems was used by Chinese mathematicians in about 250 B.C. The process was unknown
in Western culture until the nineteenth century, when a famous German mathematician, Carl Friedrich Gauss,
discovered it. A German engineer, Wilhelm Jordan, popularized the algorithm in an 1888 text on geodesy.
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DEF IN I T I ON A rectangular matrix is in echelon form (or row echelon form) if it has the
following three properties:
1. All nonzero rows are above any rows of all zeros.
2. Each leading entry of a row is in a column to the right of the leading entry of

the row above it.
3. All entries in a column below a leading entry are zeros.
If a matrix in echelon form satisfies the following additional conditions, then it is
in reduced echelon form (or reduced row echelon form):
4. The leading entry in each nonzero row is 1.
5. Each leading 1 is the only nonzero entry in its column.

An echelon matrix (respectively, reduced echelon matrix) is one that is in echelon
form (respectively, reduced echelon form). Property 2 says that the leading entries form
an echelon (“steplike”) pattern that moves down and to the right through the matrix.
Property 3 is a simple consequence of property 2, but we include it for emphasis.

The “triangular” matrices of Section 1.1, such as24 2 �3 2 1

0 1 �4 8

0 0 0 5=2

35 and
24 1 0 0 29

0 1 0 16

0 0 1 3

35
are in echelon form. In fact, the second matrix is in reduced echelon form. Here are
additional examples.

EXAMPLE 1 The following matrices are in echelon form. The leading entries ( )
may have any nonzero value; the starred entries (�) may have any value (including zero).2664

� � �

0 � �

0 0 0 0

0 0 0 0

3775;

266664
0 � � � � � � � �

0 0 0 � � � � � �

0 0 0 0 � � � � �

0 0 0 0 0 � � � �

0 0 0 0 0 0 0 0 �

377775
The following matrices are in reduced echelon form because the leading entries are 1’s,
and there are 0’s below and above each leading 1.2664

1 0 � �

0 1 � �

0 0 0 0

0 0 0 0

3775;

266664
0 1 � 0 0 0 � � 0 �

0 0 0 1 0 0 � � 0 �

0 0 0 0 1 0 � � 0 �

0 0 0 0 0 1 � � 0 �

0 0 0 0 0 0 0 0 1 �

377775

Any nonzero matrix may be row reduced (that is, transformed by elementary row
operations) into more than one matrix in echelon form, using different sequences of row
operations. However, the reduced echelon form one obtains from a matrix is unique. The
following theorem is proved in Appendix A at the end of the text.

THEOREM 1 Uniqueness of the Reduced Echelon Form

Each matrix is row equivalent to one and only one reduced echelon matrix.




